Exercise 20

(a) If $\$ 1000$ is borrowed at 8% interest, find the amounts due at the end of 3 years if the interest is compounded (i) annually, (ii) quarterly, (iii) monthly, (iv) weekly, (v) daily, (vi) hourly, and (vii) continuously.
(b) Suppose $\$ 1000$ is borrowed and the interest is compounded continuously. If $A(t)$ is the amount due after t years, where $0 \leq t \leq 3$, graph $A(t)$ for each of the interest rates $6 \%, 8 \%$, and 10% on a common screen.

Solution

Part (a)

The value of an investment that has compounding interest (n times per year with an interest rate r) is

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

The amount owed back at the end of 3 years if the interest is compounded annually is

$$
A(3)=1000\left(1+\frac{0.08}{1}\right)^{(1) 3} \approx \$ 1259.71
$$

The amount owed back at the end of 3 years if the interest is compounded quarterly is

$$
A(3)=1000\left(1+\frac{0.08}{4}\right)^{(4) 3} \approx \$ 1268.24
$$

The amount owed back at the end of 3 years if the interest is compounded monthly is

$$
A(3)=1000\left(1+\frac{0.08}{12}\right)^{(12) 3} \approx \$ 1270.24
$$

The amount owed back at the end of 3 years if the interest is compounded weekly is

$$
A(3)=1000\left(1+\frac{0.08}{\frac{365}{7}}\right)^{\left(\frac{365}{7}\right)^{3}} \approx \$ 1271.02
$$

The amount owed back at the end of 3 years if the interest is compounded daily is

$$
A(3)=1000\left(1+\frac{0.08}{365}\right)^{(365) 3} \approx \$ 1271.22 .
$$

The amount owed back at the end of 3 years if the interest is compounded hourly is

$$
A(3)=1000\left(1+\frac{0.08}{24(365)}\right)^{[24(365)]]^{3}} \approx \$ 1271.25 .
$$

The amount owed back at the end of 3 years if the interest is compounded continuously is

$$
A(3)=\lim _{n \rightarrow \infty} 1000\left(1+\frac{0.08}{n}\right)^{(n) 3}=1000 e^{0.08(3)} \approx \$ 1271.25
$$

Part (b)

If the interest is compounded continuously, the amount owed back after t years is

$$
A(t)=A_{0} e^{r t}
$$

where A_{0} is the amount borrowed and r is the interest rate.

